ভেদাঙ্ক উপাত্ত-এর ব্যাপ্তির একটি পারিসাংখ্যিক পরিমাপক।
গাণিতিক সূত্র
যদি একটি দৈব চলক
-এর প্রত্যাশিত মান (গড়) বর্তমান থাকে, তখন
-এর ভেদাঙ্ক বা ভেদমান নিম্নলিখিত সূত্র দ্বারা গণনা করা যায়:
![{\displaystyle {\begin{aligned}\langle \langle X\rangle \rangle &=\langle (X-\mu )^{2}\rangle \\\operatorname {Var} (X)&=\operatorname {E} [(X-\mu )^{2}]\,.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a412d76332302df5230e097aa8cd38d6b431da7)
এই সংজ্ঞা বিচ্ছিন্ন, অবিচ্ছিন্ন সব রকমের দৈব চলকের জন্যই প্রযোজ্য। এই সূত্রটিকে নিম্নরূপে প্রকাশ করা সম্ভব:
![{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\operatorname {E} [(X-\mu )^{2}]\\&=\operatorname {E} [X^{2}-2\mu X+\mu ^{2}]\\&=\operatorname {E} [X^{2}]-2\mu \,\operatorname {E} [X]+\mu ^{2}\\&=\operatorname {E} [X^{2}]-2\mu ^{2}+\mu ^{2}\\&=\operatorname {E} [X^{2}]-\mu ^{2}\\&=\operatorname {E} [X^{2}]-\operatorname {E} [X]^{2}.\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e8721ad36902186a87030447582f9c1d70a9b5f)
দৈব চলক
-এর ভেদাঙ্ককে সাধারণত
,
, বা
(উচ্চরণ “সিগমা স্কয়ার্ড”) লেখা হয়। যদি কোনো সম্ভাবনা বিন্যাসের প্রত্যাশিত মান বিদ্যমান না থাকে, যেমনটি কশী বিন্যাসের ক্ষেত্রে হয়ে থাকে, তখন ভেদাঙ্কও গণনা করা সম্ভব না। আরো কিছু সম্ভাবনা বিন্যাস আছে, যাদের প্রত্যাশিত মান বিদ্যমান থাকলেও, ভেদাঙ্ক অসীম হতে পারে।
অবিচ্ছিন্ন দৈব চলক
যদি X একটি অবিচ্ছিন্ন দৈব চলক হয়ে থাকে, যার সম্ভাবনা ঘনত্ব ফাংশন
,
,
যেখানে
,এবং যেখানে যথার্থ সমাকলনটি নেয়া হয়
-এর উপর,
-এর ব্যাপ্তির সাপেক্ষে।
বিচ্ছিন্ন দৈব চলক
যদি X একটি বিচ্ছিন্ন দৈব চলক হয়ে থাকে, যার সম্ভাবনা বিন্যাস
, তখন

বৈশিষ্ট
ভেদাঙ্ক হলো অঋণাত্মক সংখ্যা কারণ দ্বিঘাত মানগুলো কেবলি ধনাত্মক বা শূন্য হতে পারে। ধ্রুব সংখ্যার ভেদাঙ্ক শূন্য, এবং একটি চলকের উপাত্তের ভেদাঙ্ক শূন্য যদি সবগুলো উপাত্তের মান একই হয়।
অবস্থান পরিবর্তন সাপেক্ষে ভেদাঙ্ক অপরিবর্তিত থাকে। এর মানে, যদি উপাত্তের সবগুলো মানের সাথে একটি ধ্রুব সংখ্যা যোগ করা হয়, ভেদাঙ্ক অপরিবর্তিত থাকবে। যদি উপাত্তের সবগুলো মানের সাথে একটি ধ্রুব সংখ্যা দ্বারা গুন করা হয়, সেক্ষেত্রে ভেদাঙ্ক সেই ধ্রুব সংখ্যার দ্বিঘাতের দ্বারা গুণনের সমান হবে। এই দুই বৈশিষ্ট নিম্নলিখিত সূত্র দ্বারা প্রকাশ করা যেতে পারে:

সহজে ব্যবহার্য সূত্র
ভেদাঙ্কের সহজে ব্যবহার্য সূত্র নিম্নরূপে লিখা যেতে পারে

আরো দেখুন
বহিঃসংযোগ
টেমপ্লেট:অসম্পূর্ণ